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Abstract
An additional spheroidal integral of motion and bound with its groups of
some additional symmetry in the model quantum-mechanical problem of two
centres Z1Z2ω with Coulomb and oscillator interactions is obtained, the group
properties of its solutions are studied. For such symmetry groups of the
problem we use the groups P(3) ⊗ P(2, 1),P(5, 1) and P(4, 2), among them
the P(3) ⊗ P(2, 1) group possesses the smallest number of parameters. The
obtained results may appear useful in the calculations of QQq-baryons and
QQg-mesons energy spectra.

PACS numbers: 02.20.−a, 02.20.Sv, 02.20.Tw, 03.65.Fd, 11.30.Cp

1. Introduction

As a rule, when systems possessing additional (besides geometrical) symmetry are considered,
two methods are used [1, 2]. The first of them consists in rewriting the Schrödinger equation
and putting it in the form where such additional symmetry becomes explicit. The second
one implies the construction of integrals of motion which play the role of non-geometrical
symmetry group generators.

In the proposed paper, based on the example of a physically important model of
confinement-type two-centred potential, we try to emphasize the deep relationship of the
additional symmetry to the possibility of separation of variables in the Schrödinger equation.
The knowledge of such kinds of relationships in two recent decades [3] has resulted in the
intense application of the method of the separation of variables to the equations of mathematical
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physics and led to a series of important and far from trivial results in this field of mathematics
(see, for instance, [4, 5]).

Below, the group properties of a model quantum problem of the motion of a light particle
(a gluon) in the field of two heavy particles (a quark–antiquark pair) are studied. Recently, this
problem has become the subject of intense study due to its relation to a wide range of problems
of hadron physics: models of baryons with two heavy quarks (QQq-baryons) [6] and models
of heavy hybrid mesons with open flavour (QQg-mesons) [7]. In spite of the lack of strict
theoretical substantiation, the potential models give a satisfactory description of mass spectra
for heavy mesons and baryons (see, e.g., [6–8] and references therein), which, according to
modern views, represent bound states of quarks. While modelling the interquark interaction
potential, as a rule, confinement-type potentials are used [8, 9]. One such potential is a
so-called Cornell potential, containing a Coulomb-like term of single-gluon exchange and a
term, responsible for the string interaction, providing the quark confinement. The confinement
part of the potential is most often modelled by a spatial spherically symmetrical oscillator
potential [6, 7]. Then in a non-relativistic approximation, the motion of a light quark (gluon)
in the field of two heavy quarks can be described by a stationary Schrödinger equation with
a model-combined potential, being the sum of the potential of two Coulomb centres and the
potential of two harmonic oscillators:

V (r1, r2) = −Z1

r1
− Z2

r2
+ ω2(r2

1 + r2
2

)
. (1)

In this formula, r1 and r2 are the distances from the particle to the fixed force centres 1 and 2,
Z1,2 = 2

3αs, αs is the strong interaction constant, and the phenomenological parameter ω is
chosen from the condition of the best agreement of the calculated mass spectra of the quark
system with the experimental data. In order to avoid ambiguities, one should mention that
in our consideration, concerning not only the case of purely Coulomb interaction of the light
particle with each of the centres, the notion of the force centre is preserved for the r1,2 = 0
points, where the combined potential (1) has singularities.

In the dimensionless variables, the Schrödinger equation with the model potential (1) is
given by

Ĥ� ≡
[
−1

2
� −Z1

r1
− Z2

r2
+ ω2(r2

1 + r2
2

)]
�(r;R) = E(R)�(r;R), (2)

where r is the distance from the particle to the midpoint of the intercentre distance R,E(R)

and �(r;R) are the particle energy and wavefunction. Hereafter, the spectral problem for the
Schrödinger equation (2) with the combined potential (1) is conveniently denoted by Z1Z2ω.
The sense of such notation follows from the fact that the traditional quantum-mechanical
problem of two purely Coulomb centres [10] has a standard notation Z1Z2. Note that the
Schrödinger equation for the Z1Z2 problem can be obtained from equation (2) by a limiting
transition ω → 0.

It is known that the one-Coulomb-centre (hydrogen-like atom) problem can be solved
similar to the problem of representation theory of the group O(4) [1, 11] or of more general
groups O(4, 1) [12] and O(4, 2) [13]. The wavefunctions of a hydrogen-like atom represent
the special basis of a degenerate representation of the group O(4) or the above mentioned
more general groups. Recurrent relations between themselves connecting corresponding
radial integrals 〈rn〉 [14, 15] are the consequence of these group properties.

The group properties, eigenfunction and eigenvalue spectrum for the problem of two pure
Coulomb centres have also been substantially studied in [10, 16–19]. Namely, the choice of
a certain non-canonical basis in a group being a direct product of two groups of motions of
three-dimensional spaces P(3) ⊗ P(2, 1), or in wider groups of motions of six-dimensional



Non-geometrical symmetry and separation of variables in the two-centre problem 9953

spaces P(5, 1) and P(4, 2) is known to result in the necessity to solve the problem equivalent
to Z1Z2. The consequence of these group properties of Z1Z2 solutions problem is a linear
algebra of two-centred integrals, obtained in [19].

Here, we show that for our case of Z1Z2ω problem a generally similar situation takes place.
This problem can also be considered as a problem of the theory of representations of certain
non-compact groups, where the function being a product of a quasiradial and a quasiangular
two-centred function by exp(imα + im̃β), comprises the basis of a degenerate non-canonical
representation of the group being a direct product of two three-dimensional space motion
groups P(3) ⊗ P(2, 1), or wider six-dimensional space motion groups P(5, 1),P(4, 2) etc.

In contrast to the one-centre problem the operator Ê, corresponding to the energy operator
of the Z1Z2ω problem, is not the Casimir operator of the considered groups and consequently
does not commute with all generators of these groups. The operator Ê and the operator λ̂,
corresponding to the ‘additional’ operator of the separation constant λj commuting with Ê,
in the two-centre problem considered here, are included into the set of mutually commuting
operators, determining the non-canonical basis in the considered groups. It is connected with
the fact that the Schrödinger equation (2) with two Coulomb and two oscillator potentials
permits the separation of variables in the only coordinate system (in contrast to the one-
Coulomb-centre problem, which enables the separation of variables in a few various coordinate
systems) and also that a degeneracy of energy values (the crossing of curves at some values of
internuclear distance R) exists only when out of the three not less than two quantum numbers
differ, while in the one-centre problem at the given value of principal quantum number N the
energy is degenerate at all possible values of quantum numbers l, m.

Also note that the considered groups P(3) ⊗ P(2, 1),P(5, 1),P(4, 2) are the groups of
motions (translations and rotations) of the corresponding spaces, not the groups of rotations
as in the case of the hydrogen-like atom groups.

Without a detailed consideration of all aspects of the chosen representations of the
mentioned groups only note that all these representations are non-canonical representations in
the group theory. For example, for a group of three-dimensional rotations the non-canonical
representations were first considered in [20] in the context of the quantum theory of the
asymmetric rotator.

The term ‘non-canonical representation’ is used in the present paper (as in [18, 19]) for
faintly studied representations where not all the operators of the complete set of the observed
quantities are invariants of the subgroups of the considered group.

2. Spheroidal integral of motion in the problem Z1Z2ω

The variables in equation (2) can be separated by introducing a prolate spheroidal (elliptical)
coordinate system {ξηα} with the origin at the midpoint of the R segment and foci at its
endpoints [10]:

ξ = (r1 + r2)/R, 1 � ξ < ∞,

η = (r1 − r2)/R, −1 � η � 1,

α = arctan

(
x2

x1

)
, 0 � α < 2π

 . (3)

Here α is the angle of rotation around the OX3 axis; the origin of the Cartesian coordinate
system {x1, x2, x3} is located at the midpoint of the segment R and the axis OX3 is directed
from the centre 1 to the centre 2.
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Consider the explicit form of the differential equations resulting from the procedure of
the separation of variables in equation (2) in prolate spheroidal coordinates (3):[
− 2

R2(ξ 2 − η2)

(
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+

∂

∂η
(1 − η2)

∂

∂η
+

ξ 2 − η2

(ξ 2 − 1)(1 − η2)

∂2

∂α2

)
− 2Z1

R(ξ + η)
− 2Z2

R(ξ − η)
+

ω2R2

2
(ξ 2 + η2) − E

]
�(ξ, η, α;R) = 0.

By presenting the wavefunction �(ξ, η, α;R) as a product F(ξ ;R)G(η;R)
(α) and
substituting it into (2) one obtains three ordinary differential equations linked by the separation
constants λ and m:[

d

dξ
(ξ 2 − 1)

d

dξ
+ aξ + (p2 − γ ξ 2)(ξ 2 − 1) − m2

(ξ 2 − 1)
+ λ

]
F(ξ ;R) = 0, (4)[

d

dη
(1 − η2)

d

dη
+ bη + (p2 − γ η2)(1 − η2) − m2

(1 − η2)
− λ

]
G(η;R) = 0, (5)[

d2

dα2
+ m2

]

(α) = 0. (6)

Here, we use the notation

p = R

2

√
2E′, E′ = E − ω2R2

2
, γ = ω2R4

4
,

a = (Z1 + Z2)R, b = (Z2 − Z1)R.

In order to have the complete normalized wavefunction �(r;R), the functions F(ξ ;R) and
G(η;R) should obey the boundary conditions [10, 21]:

|F(1;R)| < ∞, |F(∞;R)| < ∞ (7)

|G(±1;R)| < ∞. (8)

The procedure for obtaining the energy terms E(R) is reduced to the following steps. First two
boundary problems are considered independently: (4) and (7) for the quasiradial and (5) and (8)
for the quasiangular equations, λ(ξ) and λ(η) being considered the eigenvalues and p being left as
a free parameter. Each of the eigenfunctions can be conveniently characterized by two quantum
numbers n,m and the eigenvalue λ, namely: nξ ,m, λ(ξ) for Fnξ,m(ξ ;R) and nη,m, λ(η)

for Gnη,m(η;R). The quantum numbers nξ , nη are non-negative integers 0, 1, 2, . . . , and
coincide with the number of nodes for Fnξ,m(ξ ;R) and Gnη,m(η;R) functions on the radial
(1 � ξ < ∞) and angular (−1 � η � 1) intervals, respectively. The general theory of
Sturm–Liouville-type one-dimensional boundary problems implies that the quantum numbers
nξ , nη, m remain constant for the continuous variation of the intercentre distance R, and the
eigenvalues λ

(ξ)
nξ m(p, a, γ ) or λ

(η)
nηm(p, b, γ ) are non-degenerate.

The pair of one-dimensional boundary problems for Fnξ,m(ξ ;R) and Gnη,m(η;R) is
equivalent to the initial Z1Z2ω problem under the condition of equality of the eigenvalues
λ

(ξ)
nξ m(p, a, γ ) = λ

(η)
nηm(p, b, γ ) and on account of p, a, b, γ relationship with the E,Z1, Z2,

ω, R parameters. The eigenvalues Enξ nηm, λnξ nηm and eigenfunctions �nξ nηm(r;R) of the
three-dimensional Z1Z2ω problem are enumerated by a set of quantum numbers j = (nξnηm)

which are conserved at the continuous variation of Z1, Z2, ω,R parameters:

Ej(R) = Enξ nηm(R,Z1, Z2, ω), (9)
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�j(r;R) = Nj(R)F (ξ ;R)G(η;R)
eimα

√
2π

. (10)

The normalization constant Nj(R) is found from the condition∫
�

d� �∗
i �j = δij , d� = R3

8
(ξ 2 − η2) dξ dη dα = R3

8
dτ dα, (11)

where δij is the Kronecker symbol, � = {ξ, η, α | 1 � ξ < ∞,−1 � η � 1, 0 � α < 2π}.
Hence, the system of functions {�j(r;R)} forms a complete set of orthonormalized
wavefunctions.

Now, we proceed to establish the relationship between the symmetry properties of the
Z1Z2ω problem and the above separation of variables in the Schrödinger equation (2) in
prolate spheroidal coordinates (3). The very fact of such separation indicates an additional
(with respect to the geometrical one) symmetry of the Hamiltonian (2) causing the existence
of an additional integral of motion, whose operator commutes with Ĥ and the operator L̂3, the
projection of the angular moment on the intercentral axis R. In order to reveal it, we exclude
the energy parameter p2 and the magnetic quantum number m from the above differential
equation system (4)–(6). Thus, we derive the equation

λ̂�j (r;R) = λj�j (r;R), (12)

where λ̂ denotes a differential operator

λ̂ = 1

ξ 2 − η2

{
(ξ 2 − 1)

∂

∂η
(1 − η2)

∂

∂η
− (1 − η2)

∂

∂ξ
(ξ 2 − 1)

∂

∂ξ

}
+

[
1

1 − η2
− 1

ξ 2 − 1

]
× ∂2

∂α2
− RZ1

ξη + 1

ξ + η
+ RZ2

ξη − 1

ξ − η
+

ω2R4

4
(ξ 2 − 1)(1 − η2). (13)

The separation constant λj is the eigenvalue of this operator, and the solutions of
equation (2) are its eigenfunctions. Since in the limit ω → 0 the model Z1Z2ω problem
is reduced to the problem of two purely Coulomb centres Z1Z2 [10], it is a priori obvious
that the operator λ̂ should be a linear combination of the operators L̂3, P̂

2
3 and Ĥ (here L is

the orbital moment operator and P̂3 is the third component of the momentum) which in the
considered limit is reduced to the operator of the separation constant for the Z1Z2 problem
[10]. To determine the weight factors and the free constant in the mentioned linear combination
we compare expression (13) with the explicit form of the operators L̂3, P̂

2
3 and Ĥ in the prolate

spheroidal coordinates (3). After simple but rather tedious calculations we finally obtain the
algebraic expression for the separation constant operator in the Z1Z2ω problem:

λ̂ = −L̂2 + x3R

(
Z2

r2
− Z1

r1

)
− ω2R2

(
x2

3 +
R2

4

)
+

R2

4

(
2Ĥ − P̂ 2

3

)
. (14)

The fact that the operator λ̂ commuting with the Hamiltonian Ĥ and the operator L̂3 of
the angular moment project onto the intercentre axis R can easily be verified by the direct
calculations of commutational relations [Ĥ , λ̂] = [̂λ, L̂3] = 0. Thus, the operators Ĥ , L̂3, λ̂

have a common complete system of eigenfunctions and can be diagonalized simultaneously.
The given representation corresponds to the separation of variables in equation (2) in the
prolate spheroidal coordinates (3): the general eigenfunction of the operators Ĥ , L̂3, λ̂ is
described as a product (10).

The purely geometric symmetry group of the Hamiltonian Z1Z2ω is the O2 group
containing rotations around the intercentre axis R and reflections in the planes containing
this axis. In the symmetrical case (Z1 = Z2 = Z), the ZZω system possesses an additional
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element of geometrical symmetry—the reflection in the plane, perpendicular to the R vector
and cutting it at its centre.

In addition to the geometrical symmetry, the Z1Z2ω problem possesses some higher
symmetry related to the exact separation of variables in the Schrödinger equation (2) in the
prolate spheroidal coordinates (3).

In the following subsections we show how, by means of the separation of variables
method, the group of non-geometrical symmetry connected with the ‘additional’ operator of
the separation constant λj commuting with Ê can be determined for the quantum-mechanical
problem Z1Z2ω.

3. The representations of the group P(3) ⊗ P(2, 1)

Consider a group P(3) ⊗ P(2, 1) being a direct product of two groups of motion of three-
dimensional spaces P(3) and P(2, 1).

We recall that the group P(3) (known also as the Euclidean group E(3)) consists of
displacements (translations) and rotations (revolutions) of the Euclidean momentum space
(that is conjugated to the configurational one) of coordinates yi with a metric

yiyi = y2
1 + y2

2 + y2
3 , i = 1, 2, 3. (15)

Here and below the twice repeated indices imply summation.
The P(2, 1) group (the Euclidean group of the three-dimensional momentum space,

denoted also as E(2, 1)) consists of translations and rotations of the pseudo-Euclidean space
of coordinates yµ with a metric

yµyµ = y2
4 + y2

5 − y2
6 , µ = 4, 5, 6. (16)

The infinitesimal generators of the P(3) group

xj = −i
∂

∂yj

, £jk = −i

(
yj

∂

∂yk

− yk

∂

∂yj

)
, j, k = 1, 2, 3 (17)

and of the P(2, 1) group

xµ = −i
∂

∂yµ

, µ = 4, 5, 6; £46 = −i

(
y4

∂

∂y6
+ y6

∂

∂y4

)
,

£56 = −i

(
y5

∂

∂y6
+ y6

∂

∂y5

)
, £45 = −i

(
y4

∂

∂y5
− y5

∂

∂y4

) (18)

can easily be verified to satisfy the known structure relations:

[xi, xj ] = 0, [xi, £jk] = i(δikxj − δij xk), δij =
{

1, i = j = 1, 2, 3
0, i �= j,

[£12, £23] = i£31, [£31, £12] = i£23, [£23, £31] = i£12,

[xµ, xν] = 0, [xσ , £µν] = i(δσνxµ − δσµxν), δµν =


1, µ = ν = 4, 5
−1, µ = ν = 6
0, µ �= ν,

[£46, £56] = i£45, [£56, £45] = i£46, [£45, £46] = i£56,

[xi, xµ] = 0, [£ij , £µν] = 0, [xi, £µν] = 0, [xµ, £ij ] = 0.

(19)

Here, the indices i, j, k are 1, 2, 3 and µ, ν, σ are 4, 5, 6, and xi, yi are coordinate projections
and canonically conjugate momentum. Note that in order to simplify the notation the ‘ˆ’
symbol over the operators is omitted since in this context no threat of ambiguity can arise.
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The differential operators (17) and (18) act in the space of functions fj (y) which depend
on the choice of the complete set of diagonal operators in P(3) ⊗ P(2, 1). Here, j is the set
of the eigenvalues of these operators. It is worth noting that in the chosen representation the
functions fj (y) are scalar. In the general case, the generators (17) and (18) can possess a spin
part, and fj (y) can be spinors, vectors, tensors, respectively.

By Fourier transformation

fj (y) =
∫

exp(−ixy)�j (x) dx (20)

we proceed to the x-representation and choose, in the P(3) ⊗P(2, 1) group, the following set
of diagonal mutually commuting operators:

Ĉ1 = xixi, Ĉ2 = xixiL2 − xixj £ik£jk, (21)

Ĉ3 = xµxµ, Ĉ4 = xµxµM2 − xµxσ £νµ£σµ, (22)

£12, £45, (23)

Ê = − 1

2
(
x2

6 − x2
3

) [−M2 + 2āx6 − L2 + 2b̄x3 − 4ω2
(
x4

6 − x4
3

)]
, (24)

λ̂ =
(
x2

3 − Ĉ1
)(

x2
6 − x2

3

) [−M2 + 2āx6 + 4ω2(Ĉ2
1 − x4

6

)]
+

(
x2

6 − Ĉ1
)(

x2
6 − x2

3

) [−L2 + 2b̄x3 − 4ω2(Ĉ2
1 − x4

3

)]
.

(25)

Here,

L2 = £2
12 + £2

32 + £2
31, M2 = £2

46 + £2
56 − £2

45,

ω, ā and b̄ are constants. Note that summation over the indices i, j, k is performed according
to the metric (15), and over the indices µ, ν, σ according to the metric (16).

The introduced operators (21)–(25) possess important properties. The operators Ĉ1, Ĉ2

are the Casimir operators of the P(3) group and the operators Ĉ3, Ĉ4 are the Casimir operators
of the P(2, 1) group. One can verify by direct calculations that the operators Ĉ2 and Ĉ4

are equal to zero: Ĉ2 = Ĉ4 = 0. This, in turn, means that the considered representation is
degenerate. Further, £12, £45 are the invariants of one-parametric subgroups of rotations in
P(3) and P(2, 1), respectively, and Ê, λ̂ are the non-canonical diagonal operators.

By substituting the expression for L2 − 2b̄x3 − 4ω2x4
3 (or M2 − 2āx6 + 4ω2x4

6 ) from (24)
into (25) λ̂ can be given by

λ̂ = −L2 + 2
(
Ĉ1 − x2

3

)[
Ê − 2ω2

(
Ĉ1 + x2

3

)]
+ 2b̄x3, (26)

or also by

λ̂ = M2 + 2
(
Ĉ1 − x2

6

)[
Ê − 2ω2

(
Ĉ1 + x2

6

)] − 2āx6. (27)

Our next goal is to construct the basis of eigenvectors �j(x) in which the complete set of
operators (21)–(25) is diagonal in the P(3) ⊗P(2, 1) group. For this purpose, we introduce a
new coordinate system in the x-space:

x1 = R

2

√
1 − η2 cos α, x2 = R

2

√
1 − η2 sin α, x3 = R

2
η,

x4 = R

2

√
ξ 2 − 1 cos β, x5 = R

2

√
ξ 2 − 1 sin β, x6 = R

2
ξ,

(28)

where

0 � R < ∞, 1 � ξ < ∞, −1 � η < +1, 0 � α, β � 2π. (29)
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Having omitted the intermediate calculations, we write the final expressions for the
operators (17) and (18) in the new variables (28):

£23 = −i

(√
1 − η2 sin α

∂

∂η
− η

cos α√
1 − η2

∂

∂α

)
,

£31 = −i

(
−

√
1 − η2 cos α

∂

∂η
− η

sin α√
1 − η2

∂

∂α

)
, £12 = −i

∂

∂α
,

£46 = −i

(√
ξ 2 − 1 sin β

∂

∂ξ
+ ξ

cos β√
ξ 2 − 1

∂

∂β

)
,

£56 = −i

(√
ξ 2 − 1 cos β

∂

∂ξ
− ξ

sin β√
ξ 2 − 1

∂

∂β

)
, £45 = −i

∂

∂β
.

(30)

It is seen from these formulae that the operators £12 and £45, belonging to the complete
set of mutually commuting operators (21)–(25), in the coordinate system (28) depend only on
the variables α and β. Hence, we obtain the following relations:

−i
∂

∂α
�j (ξ, η, R, α, β) = mj�j(ξ, η, R, α, β),

−i
∂

∂β
�j (ξ, η, R, α, β) = m̃j�j (ξ, η, R, α, β),

(31)

where mj, m̃j are the eigenvalues of the £12, £45, operators, respectively. The common solution
of equations (31) can now be given in the multiplicative form

�j(ξ, η, R, α, β) = ϕ(ξ, η, R) eimj α+im̃j β . (32)

The rest of the operators from the complete set (21)–(25) in the coordinate system (28)
taking account of (31) are given by

Ĉ1 = R2

4
, Ĉ2 = 0, Ĉ3 = −R2

4
, Ĉ4 = 0, (33)

Ê = − 2

R2(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ aξ − ω2R4

4
ξ 4 − m̃2

j

ξ 2 − 1

]

− 2

R2(ξ 2 − η2)

[
∂

∂η
(1 − η2)

∂

∂η
+ bη +

ω2R4

4
η4 − m2

j

1 − η2

]
, (34)

λ̂ = − (1 − η2)

(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ aξ +

ω2R4

4
(1 − ξ 4) − m̃2

j

ξ 2 − 1

]

+
(ξ 2 − 1)

(ξ 2 − η2)

[
∂

∂η
(1 − η2)

∂

∂η
+ bη − ω2R4

4
(1 − η4) − m2

j

1 − η2

]
, (35)

note that a = āR, b = b̄R.
Though in order to solve the question concerning the eigenfunctions of the complete set

of operators (21)–(25) one can use their explicit form (33)–(35), we give the expressions for
the operators (26) and (27) in the new coordinates as well, since they will also be used for
another purpose:
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λ̂ =
[

∂

∂η
(1 − η2)

∂

∂η
+ bη + (1 − η2)

R2Ê

2
− ω2R4

4
(1 − η4) − m2

j

1 − η2

]
, (36)

λ̂ = −
[

∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ aξ + (ξ 2 − 1)

R2Ê

2
+

ω2R4

4
(1 − ξ 4) − m̃2

j

ξ 2 − 1

]
. (37)

Now we show how, using the separation of variables method, one can find
�j(ξ, η, R, α, β) functions which are common eigenfunctions of the operators (31), (33)–
(35) and (36), (37). The application of this method is based on the properties of the λ̂ operator,
expressed by equations (36) and (37). We choose the basis of eigenvectors �j where the
operator λ̂ is diagonal:

λ̂�j = λj�j (38)

and represent �j in the form of a product

�j ≡ �j(ξ, η, R, α, β) = Nj(R)Fj (ξ ;R)Gj(η;R)
exp(imjα + im̃jβ)√

2π
, (39)

where λj are the eigenvalues of the operator λ̂ and Nj(R) is a normalization factor. After
the separation of variables in (38) a pair of ordinary differential equations for the unknown
functions Fj (ξ ;R) and Gj(η;R) is obtained:[

∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ aξ +

R2Ej

2
(ξ 2 − 1) +

ω2R4

4
(1 − ξ 4) + λj − m̃2

j

ξ 2 − 1

]
Fj (ξ ;R) = 0,

(40)[
∂

∂η
(1 − η2)

∂

∂η
+ bη +

R2Ej

2
(1 − η2) − ω2R4

4
(1 − η4) − λj − m2

j

1 − η2

]
Gj(η;R) = 0.

(41)

Here, Ej are the eigenvalues of the operator Ê. Since the operator λ̂ commutes with all the
operators (21)–(24), the eigenfunctions (39) of the operator λ̂ are also the eigenfunctions of
the operators (21)–(24) in the coordinate system (28).

The invariance of the Hamiltonian of the Z1Z2ω problem with respect to the P(3) ⊗
P(2, 1) group is now obvious. Indeed, at mj = m̃j = m the system of equations (40) and
(41) coincides with the system (4)–(6). Hence, at given a, b, ω,R,mj , m̃j the determination
of the eigenvalues Ej = Ej(R), λj = λj (R) and, limited in the corresponding ranges (29),
eigenfunctions Fj (ξ ;R),Gj (η;R) of the complete set of the commuting operators (31), (33)–
(35) is reduced at mj = m̃j = m to the solution of the problem, completely equivalent to the
quantum-mechanical problem Z1Z2ω. In this case, the common eigenfunctions (39) of the
complete set (31) and (33)–(35), which comprise the basis of the degenerate non-canonical
representation of P(3)⊗P(2, 1) group, coincide within the normalization factor with the two-
centred functions (10) multiplied by exp(imβ). Expressions (34) and (35) for the operators
Ê and λ̂ coincide at mj = m̃j = m with the expressions for the operators of energy Ĥ and
separation constant λ̂ (see (13)) in the Z1Z2ω problem in the prolate spheroidal coordinate
system (3). The variable R, being used to express the Casimir operators of the P(3) ⊗P(2, 1)

group, in the Z1Z2ω problem is equal to the intercentre distance.
The operators (31) and (33)–(35) are Hermitian in the scalar product

〈�i | �j 〉 =
∫

�

�∗
i �j d�, (42)
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where � corresponds to the range (29) and the volume element d� = ξ dξ dη dα dβ. The
relation between the d� from equation (42) and volume element d� from equation (11) as well
as the link between coordinate systems (3) and (28) are given in [22]. Thus, the representation,
corresponding to the set (33)–(35) and (36), (37), is unitary.

One of the possible consequences of the above group interpretation of the solutions of
the Z1Z2ω problem consists in the calculation of the matrix elements of generators (30)
in the non-canonical basis (39) being reduced to the calculation of the two-centred integrals
over the variable ξ and the similar integrals over the variable η. This circumstance is the
base for the deduction (without the use of the explicit form of the solutions of the system of
equations (4)–(6)) of a specific linear algebra of two-centred integrals. It consists of a
sum of two independent subalgebras: one for the radial integrals containing polynomials
over ξ,

√
ξ 2 − 1 and ∂

∂ξ
, and the other for the angular integrals containing polynomials over

η,
√

1 − η2 and ∂
∂η

. But in the specific quantum-mechanical calculations of the energies
and wavefunctions of various states of three-quark systems the calculations of two-centred
integrals, containing the derivatives over R, are required. The standard way, resulting in
the construction of the algebra of such kinds of integrals, consists in the extension of the
group P(3) ⊗ P(2, 1) to the ordinary one P(5, 1), being realized by the motions of the
six-dimensional coordinate space yν with the metric

yνyν = y2
1 + y2

2 + y2
3 + y2

4 + y2
5 − y2

6 . (43)

Having complemented the set of generators (17) and (18) by nine more generators

£j4 = −i

(
yj

∂

∂y4
− y4

∂

∂yj

)
, j = 1, 2, 3,

£j5 = −i

(
yj

∂

∂y5
− y5

∂

∂yj

)
, £j6 = −i

(
yj

∂

∂y6
+ y6

∂

∂yj

)
,

(44)

we proceed to the x-representation and choose the set of diagonal commuting operators
corresponding to the set (21)–(25). Additional diagonal operators, arising in the group P(5, 1)

due to the degeneracy of the chosen representation, do not result in any new relations. In the
coordinate system (28), we obtain the same equations (40) and (41) which are reduced to
the problem (4)–(6) and whose solutions in the case of the group P(5, 1) will be realized on
the cone

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − x2

6 = 0. (45)

In this case, the generators (44) in the coordinate representation in the coordinate system
(28) are given by

£14 = −i
√

(ξ 2 − 1)(1 − η2)

[
cos α cos β

(
ξ

∂

∂ξ
+ η

∂

∂η

)
− cos α sin β

(ξ 2 − 1)

∂

∂β

+
cos β sin α

(1 − η2)

∂

∂α
− R cos α cos β

∂

∂R

]
,

£24 = −i
√

(ξ 2 − 1)(1 − η2)

[
sin α cos β

(
ξ

∂

∂ξ
+ η

∂

∂η

)
− sin α sin β

(ξ 2 − 1)

∂

∂β

− cos β cos α

(1 − η2)

∂

∂α
− R sin α cos β

∂

∂R

]
,

£34 = i
√

ξ 2 − 1

[
cos β

(
ξη

∂

∂ξ
− (1 − η2)

∂

∂η

)
− η sin β

(ξ 2 − 1)

∂

∂β
− Rη cos β

∂

∂R

+
sin α sin β

(1 − η2)

∂

∂α
− R cos α sin β

∂

∂R

]
,
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£25 = −i
√

(ξ 2 − 1)(1 − η2)

[
sin α sin β

(
ξ

∂

∂ξ
+ η

∂

∂η

)
+

sin α cos β

(ξ 2 − 1)

∂

∂β

− cos α sin β

(1 − η2)

∂

∂α
− R sin α sin β

∂

∂R

]
,

£35 = −i
√

ξ 2 − 1

[
sin β

(
ξη

∂

∂ξ
− (1 − η2)

∂

∂η

)
+

η cos β

(ξ 2 − 1)

∂

∂β
− Rη sin β

∂

∂R

]
,

£16 = −i
√

1 − η2

[
cos α

(
−(ξ 2 − 1)

∂

∂ξ
− ξη

∂

∂η

)
− ξ sin α

(1 − η2)

∂

∂α
+ Rξ cos α

∂

∂R

]
,

£26 = −i
√

1 − η2

[
sin α

(
−(ξ 2 − 1)

∂

∂ξ
− ξη

∂

∂η

)
+

ξ cos α

(1 − η2)

∂

∂α
+ Rξ sin α

∂

∂R

]
,

£36 = −i

[
−η(ξ 2 − 1)

∂

∂ξ
+ ξ(1 − η2)

∂

∂η
+ ξηR

∂

∂R

]
. (46)

Finally, consider the basis in the group P(4, 2)—the group of motions of the six-
dimensional coordinate space yµ with a metric

yµyµ = y2
1 + y2

2 + y2
3 − y2

4 − y2
5 + y2

6 . (47)

We introduce the infinitesimal generators of this group

xj = −i
∂

∂yj

, Ljk = −i

(
yj

∂

∂yk

− yk

∂

∂yj

)
, j, k = 1, 2, 3, 6,

Lµk = −i

(
yµ

∂

∂yk

+ yk

∂

∂yµ

)
, L45 = −i

(
y4

∂

∂y5
− y5

∂

∂y4

)
, µ = 4, 5

(48)

and proceed in the x-representation to a new coordinate system

x1 = R√
2

√
1 − η2 cos α cos θ, x2 = R√

2

√
1 − η2 sin α cos θ, x3 = R√

2
η cos θ,

x4 = R√
2

√
ξ 2 − 1 cos β sin θ, x5 = R√

2

√
ξ 2 − 1 sin β sin θ, x6 = R√

2
ξ sin θ,

(49)

where α, β run from 0 to π , and θ from 0 to π
2 . By calculating the expressions for the

generators (48) in the x-representation in the new coordinates (49), we finally obtain that Ljk

(j, k = 1, 2, 3), L56, L46, L45 have the same form as £jk (j, k = 1, 2, 3), £56, £46, £45 in the
P(3) ⊗ P(2, 1) group in the coordinate system (28). Now following the above scheme of
constructing the complete set of commuting operators of equations (21)–(25) type, we obtain
at cos θ = sin θ = 1√

2
, ∂

∂θ
= 0 a problem, completely equivalent to the Z1Z2ω problem.

A similar consideration of wider groups, e.g., conformal groups of six-dimensional
spaces (43) and (47) or a group being a direct product of two conformal groups of spaces
(15) and (16), results in the choice of the corresponding set of commuting operators (of
equations (21)–(25) type) to a problem, equivalent to the Z1Z2ω problem. The calculation
of the matrix elements of the generators of these groups is reduced to the calculation of
two-centred integrals, some of which contain the first and the second derivatives over R.

4. Conclusions and final remarks

Summarizing the results of this work, we focus on its most important points. By means of the
separation of variables method an additional spheroidal integral of motion λ̂ is constructed,
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whose eigenvalues are the separation constant in the model quantum-mechanical Z1Z2ω

problem. This has enabled some additional symmetry groups of this problem to be determined
and the group properties of its solutions to be studied. P(3) ⊗ P(2, 1), P(5, 1) and P(4, 2)

groups are considered as such groups, among them P(3) ⊗ P(2, 1) possessing the smallest
number of parameters.

While searching for the eigenfunctions of the complete set of mutually commuting
operators in the P(3) ⊗ P(2, 1) group in the case of degenerate unitary representations of
this group a problem is shown to occur, quite equivalent to the quantum-mechanical Z1Z2ω

problem. In this case, the energy operator Ê is not the Casimir operator of this group
and, accordingly, does not commute with all generators of this group. The operator Ê and the
operator λ̂, corresponding to the ‘additional’ operator of the separation constant λj , commuting
with Ê, are included into the set of the diagonal operators, determining the non-canonical basis
in the considered group. The space of the chosen representation of this group covers the whole
spectrum of the energy values for the two-centre Z1Z2ω problem.

The developed group treatment of the model Z1Z2ω problem is related to the group
treatment of the traditional quantum-mechanical problem of two Coulomb centres Z1Z2 [10,
16–19]. But its consequence is a richer linear algebra of two-centred integrals, which contains
the corresponding linear algebra of the Z1Z2 problem as a partial case (i.e., at ω = 0). A
separate publication will be devoted to the construction of such an algebra while here we only
represent a relation obtained using its basis

∂

∂R

(
−R2Ei

2

)
= −R

2
Vii, (50)

R(Ei − Ej)

∫
d��∗

i

∂

∂R
�j = −Vij , i �= j, m = m′, (51)

where

Vij =
∫

d��∗
i

(
−Z1

r1
− Z2

r2
+ ω2

(
r2

1 + r2
2

))
�j .

Expression (50) generalizes the Helman–Feynman theorem [23] and go over into it at ω = 0.
The presence of both mentioned algebras enables and essentially simplifies the quantum-

mechanical calculations of matrix elements and effective potentials in the three-body problem
with Coulomb and oscillatory interactions [10]. In particular, the obtained results may appear
useful in the calculations of the energy spectra of QQq-baryons and QQg-mesons. Also note
that the model Z1Z2ω problem can for certain conditions be treated as a step to the solution
of a relativized Schrödinger equation [24] with a two-centred confinement-type potential (1).
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